Ministry of Education and Science of Ukraine Sumy National Agrarian University Faculty of Engineering and Technology Department of Technical Service

Work program (syllabus) of the educational component

CC 14 – Innovative technological solutions in industrial machinery engineering (mandatory)

Implemented within the educational program
<u>"Industrial machinery engineering"</u>
(name)
in specialty 133 "Industrial machinery engineering"
(code, name)

third (educational and scientific level) level of higher education

Tarelnyk V.B., Doctor of Technical Sciences, Professor, Head of the Department of Technical Sciences

(signature)

(surname, initials) (academic degree and title, position)

(signature)

(signature)

Reviewed, approved and ratified at a				
meeting of the Technical Service				
Department (name of the department)	Head	MIT		
(name of the department)	departments	(signature)	larelnyk V.B. (last name, initials)	

Agreed:

Guarantor of the educational program

Dean of the Faculty

Review of the work program (attached) provided by:

V.M. Zubko

(Full name)

(full name)

V.B. Tarelnyk

V.M. Zubko

(full name)

M.Yu.Dumanchuk (Full name)

Methodologist of the Education Quality Department, licensing and accreditation <u>*F*, barn</u>N.M. Baranik (signature)

Registered in the electronic database: date: 06.07. 2023.

©SNAU, 2023

Information on reviewing the work program (syllabus):

Academic	Number of the	Changes r	eviewed and approv	ed
year in which changes are made	appendix to the work program with a description of the changes	Date and number of the minutes of the department meeting	Head of the Department	Education al program guarantor

1	Name CC	Innovative technological solutions in industrial mechanical					
		engineering					
2	Faculty/department	Faculty of Engineering and Technology / Department of Technical Service					
3	Status CC	Mandatory					
4	Program/Specialty		scientific program	m "Industrial Me	chanical		
4	(programs) of which the CC		specialty 133 "In				
	for (to be filled in for	Engineering"	specially 155 III		ical		
	mandatory CCs) is a	Engineering					
	component						
5	NRC level	Level 8					
6	Semester and duration of	Daily					
0		-	alta				
7	study	2semester, 9 we	eks				
	Number of ECTS credits	3	1 (1		T 1 1 4		
8	Total hours and their distribution		ontact work (class		Independent		
		Lectures	Practical /	Laboratory	work		
	2nd semester – 90 hours.		seminar		70		
	I C' I I	6	6	-	78		
9	Language of instruction	Ukrainian, Engl		· 1 G · D			
10	Teacher/Educational		Doctor of Techn				
	Component Coordinator	-	ent of Technical		tation hours –		
10.1			rom 9:00 to 11:00), room 302m			
	Contact information	tarelnyk@ukr.ne					
11.	General description of the		cus of the ed				
	educational component		chieving operation				
			olies and parts by				
10			nature and appli				
12.	Purpose of the educational		applicants of				
	component		studying tribotech				
			machines. Mast				
			reasing the wear		-		
		1	s, in order to ensu	are the operability	ty of machines		
10		at optimal cost of					
13.	Prerequisites for studying		component is ba				
	CC, connection with other		scientific proble				
	educational components of		ng methods of				
	ESP		ch, taking into				
		uncertainty of the operating conditions of technological					
1.4		systems.	1 4 41	1.1 / 1 1	.1 .		
14.	Academic Integrity Policy		submits another of		as their own,		
			nceled and retake				
		In case of cheating, retake the corresponding assignment. In case of using text borrowings without proper citation					
			-		-		
1.7	r · 1 / /1 ·	(academic plagiarism), the work will be canceled. https://cdn.snau.edu.ua/moodle/course/view.php?id=1183					
15	Link to the course in Moodle	nttps://cdn.snau.	.eau.ua/moodle/co	ourse/view.php?	<u>ia=1183</u>		
	uvioodie						

1. GENERAL INFORMATION ABOUT THE EDUCATIONAL COMPONENT

1. LEARNING OUTCOMES BY EDUCATIONAL COMPONENT AND THEIR RELATIONSHIP WITH PROGRAM LEARNING OUTCOMES

Learning outcomes for CC:	Program learning						How is the LOA assessed?
After studying the educational					С		
component, the applicant is expected to	aim	is to	achie	eve (indic	ate	
be able to		num		`			
		e nun					
			the H	~ ~			
	01)3)4	60	11	PL012	
	PL01	PL03	PLO4	PL09	PL011	ΓO	
	Ц	Ц	Ц	Ц	Ρ	Ρ	
LOA1. Conduct systemic, structural and							Research work with presentation,
functional analysis of technical systems	Х			Х			peer evaluation
and promising areas of development of	Λ			Λ			
technical and technological systems.							
LOA2. Formulate justified technical							Preparation of theses with
and economic requirements for the							justification of rational research
machines being created, technological			Х		Х	Х	methods in accordance with the
processes for their manufacture, repair							selected object and task, mutual
and reengineering.							evaluation
LOA 3. Conduct research on the							Conducting experimental
influence of technological process		Х		Х			research, presenting results
parameters on quantitative and		Λ		Λ			
qualitative characteristics.							
LOA 4. Know and be able to apply							Research paper with presentation
progressive methods of forming	Х				Х	Х	
specified characteristics of machine	Λ				Λ	Λ	
parts.							
LOA 5. Make a scientifically based							Research paper with
choice of constructive and technological							presentation,written exam
methods to achieve the specified	Х				Х	Х	(solving a complex problem and
characteristics of technical and							short theoretical answers)
technological systems.							

PLO 1. Have conceptual and methodological knowledge in mechanical engineering and at the border of subject areas, as well as research skills sufficient to conduct scientific and applied research at the level of the latest world achievements in the relevant field, obtain new knowledge and/or implement innovations.

PLO 3. Formulate and test hypotheses; use appropriate evidence to substantiate conclusions, in particular, the results of theoretical analysis, experimental studies and mathematical and/or computer modeling, and available literature data.

PLO 4. Develop and research conceptual, mathematical and computer models of processes and systems, effectively use them to obtain new knowledge and/or create innovative products in mechanical engineering and related interdisciplinary areas.

PLO 9. Deeply understand the general principles and methods of mechanical engineering, as well as the methodology of scientific research, apply them in their own research in the field of industrial mechanical engineering and in teaching practice.

PLO 11. Carry out reengineering to improve the operational characteristics of machines, equipment, complexes, and production lines using safe technological and energy-efficient methods.

PLO 12. Increase the efficiency of systems engineering aimed at the creation, operation and utilization of industrial mechanical engineering products.

Topic.	Dist	ribution	Recommended		
List of issues to be addressed within the topic	time budget			reading	
	Cla	Classroom work Independent			
	Lec	PC	Lab	work	
Topic 1. Purpose, objectives and place of the	1	-		10	[1-6]
discipline.					
General information. Basic terms and concepts.					
Purpose and objectives of the discipline					
Topic 2. Purpose and methods of analysis of	1	-		10	[1-10], [12],
technical systems.					[18], [21]
Analysis tasks. Formalization and formulation of					[], []
the task of analyzing technical systems.					
Technology of analyzing technical systems.					
Structure of the process of analyzing technical					
systems. Formation of a description of a technical					
system A priori information. Example of machine					
analysis of a technical system					
Topic 3. Synthesis of technical systems.	1	2		12	[1-5], [9-12],
The essence of the problem of synthesis of a					[14], [15], [17]
technical system. On changing the formulation of					
the problem of synthesis. Methods of evaluating					
technical systems. Suboptimal and optimal					
synthesis of technical systems. Algorithm of					
suboptimal synthesis of technical systems. Rules					
for changing the structure and parameters of					
technical systems. Morphological analysis and					
synthesis of technical systems.					
Topic 4. Methods of finding new technical	1	2		14	[1-11], [14],
solutions.					[21]
Classification of methods for searching for new					[]
technical solutions. Trial and error method.					
Heuristic methods for activating the search for new					
technical solutions. Brainstorming method.					
Method of control questions. Method of					
morphological analysis. Synectics. Rules for					
formulating the problem.					
Topic 5.Principles of resolving technical	1	-		14	[1], [2], [6-8],
contradictions.					[14], [21]
Material-field analysis. Typical principles of					
resolving technical contradictions and examples of					
their use. Physical effects and their application.					
Application of chemical effects. Geometric effects					
and their application					
Topic 6. Technology for forming protective surface	6	2		18	[1-5], [9-14],
layers of parts					L J/L J/

3. CONTENT OF THE EDUCATIONAL COMPONENT (COURSE PROGRAM)

Surface quality of machine parts. Technology of				[16-21]
parts restoration. Quality management of surface				
layers. Methods of increasing the wear resistance				
of metals: surfacing with hard and wear-resistant				
materials; plasma spraying; heat treatment;				
chemical-thermal treatment; spraying; condensed				
ion bombardment; laser processing; electro-spark				
alloying, surface-plastic deformation and others.				
Innovative technological solutions for improving				
the quality of surfaces of typical parts.				
Total	6	6	78	

4. TEACHING AND LEARNING METHODS

LOA	Teaching methods	Number of	Teaching methods	Number of
	(work that will be carried out by	hours	(what types of educational	hours
	the teacher during classroom		activities should a	
	lessons, consultations)		postgraduate student perform	
			independently)	
LOA 1	Problem lecture, thematic	6	Independent work with the	8
	discussion, discussion of current		textbook, study of theoretical	
	issues		material.	
LOA 2	Showing examples of solving	8	Independent work with the	12
	production problems using an		textbook, study of theoretical	
	interactive method during		material.	
	lectures and practical classes			
LOA 3	Multimedia lecture,	6	Independent work with the	10
	brainstorming, discussion of		textbook, completion of	
	current issues.		individual tasks.	
LOA 4	Showing examples of solving	8	Personalized learning,	12
	production problems using an		independent work with the	
	interactive method during		textbook, completion of	
	lectures and practical classes		individual tasks.	
LOA 5	Problem lecture, thematic	8	Independent work with the	12
	discussion, round table,		textbook, learning through	
	discussion of current issues.		research.	

5. EVALUATION BY EDUCATIONAL COMPONENT

5.1. Diagnostic assessment (indicated as needed)

5.2. Summative assessment

5.2.1. To assess the expected learning outcomes, there are

Ν	Summative assessment methods	Points / Weight in the overall	Date of
0.		score	compilation
1.	Completing an individual task	25 points / 25%	For 3 weeks
2.	Completing an individual task	25 points / 25%	At 6 weeks
3.	Analytical review with presentation	20 points / 20%	At 8 weeks
4.	Written exam (solving a complex problem and short	30 points /30%	Week 9 (as
	theoretical answers)		scheduled)

Component	Unsatisfactoril y	Satisfactorily	Good	Perfectly
	<30 points	15-37 points	38-44 points	45-50 points
	Little awareness	The problem is mostly	Demonstrated	The problem is
	of the problem,	described (without	understanding, depth	sufficiently deeply
	a brief	analysis), the main	and/or detail of the	and/or in detail
	1	*	L / L	disclosed, different
	-	sufficiently	aspects are substantiated,	
Performing		substantiated, the	arguments are	are analyzed; all main
individual		argumentation is not	consistent; different	points are stated, the
tasks	1	5	points of view are	arguments are
		the presentation is	1 1	consistent and
		absent or superficial.	meaningful, consistent.	weighty; different
		Only literature	Literature reviewed is	points of view are
		recommended by the	only recommended by	analyzed, and one's
		teacher is reviewed.	the teacher.	own suggestions are
				given.
	<12 points	12-14 points	15-17 points	18-20 points
	Task	Most requirements are		
	requirements not met	met, but individual components are	met	requirements have been met, creativity
Analytical		components are missing or		and thoughtfulness
review with		insufficiently		have been
presentation		disclosed, there is no		demonstrated, and
		analysis of other		an original solution
		approaches to the issue		to the problem has
				been proposed.
	<18 points	18-22 points	23-26 points	27-30 points
	<60% correct	< - 40 /		90-100% correct
Written exam	answers	60-74% correct	75-89% correct answers,	
	problem tooks		problem tasks completed	
	not completed	partially completed	with minor inaccuracies.	
	1			answers.

5.2.2. Evaluation criteria

5.3. Formative assessment:

To assess current progress in learning and understand areas for further improvement,

No.	Elements of formative assessment	Date
1	Verbal feedback from the teacher and students regarding	Within 3 weeks
	individual task iconography	
2	Verbal feedback from the teacher and students regarding	Within 6 weeks
	individual task iconography	
3	Verbal feedback from the teacher and students regarding	During the 8th week
	analytical review with presentation	
4	Written test with elements of problem tasks	During the 9th week

6. LEARNING RESOURCES (LITERATURE)

6.1. Main sources:

- 1. Problems of safe operation of compressor and pumping equipment in modern industry: monograph / V.S. Martsynkovsky, V. B. Tarelnyk, et al.; ed. V. B. Tarelnyk, E.V. Konoplyanchenko. Sumy: FOP Lytovchenko E.B., 2020.- 410p
- 2. Kravets S.V., Luk'yanchuk O.P., Tymeichuk O.Yu. Research of machine working processes and optimization methods: a textbook. Rivne: NUVGP, 2011. 239.
- Loveikin V.S. Theory of technical systems / V.S. Loveikin, Yu.O. Romasevich. K.: CP "KOMPRINT", 2017. – 291 p.
- 4. Innovative development of the enterprise. Textbook / edited by P.P. Mykytyuk. Ternopil: PP "Printer Inform", 2015. 224 p.
- 5. Ilyashenko CM Management of innovative development: problems of the concept, methods: textbook / Ilyashenko S. M. Sumy: University Book, 2010.- 129 p.
- Tarelnyk V.B. Tribotechnology of machine parts: a textbook / [Tarelnyk V.B., Konoplyanchenko E.V., Martsynkovsky V.S., Antoshevsky Bohdan]; edited by Prof. V.B. Tarelnyk.- Sumy: Publishing house "MakDen", 2010.- 264 p.
- 7. Increasing the stability of cutting tools by technological methods: a textbook / [Tarelnyk V.B., Konoplyanchenko E.V., Martsynkovsky V.S. and others]; edited by Prof. V.B. Tarelnyk.- Sumy: University Book, 2011.- 189 p.
- Tarelnyk V.B. Modern methods of shaping friction surfaces of machine parts: Monograph / Tarelnyk V.B., Martsynkovsky V.S., Antoshevsky B..- Sumy: Publishing house "MakDen", 2012.-280 p.
- Antoszewski B., Tarelnik W., Konopliaczenko J.Improvement of resistance to fretting wear in sprzęgłach with elastic metal elements. W: Wybrana Problematyka w Technologiach Inżynierii Mechanicznej: Monografie, Studia, Rozprawy, M 135. redakcija Radek N., Sęk P. Kielce, Wydawnictwo Politechniki Świętokrzyskiej, 2020, pp. 67-76.
- 10.Makarysheva T.S., Eremkin E.A. Real innovations in the machine-building industry // Science and Innovations. 2010. Vol. 6. No. 4. P. 55–66/
- 11.Selected problems of surface engineering and tribology: Monografie, Studia, Rozprawy, M 85/ V. Martsynkovskyy, V. Tarelnyk, B. Antoszewski, Ie.

Konoplianchenko, A. Zhukov and etc.; edited by B. Antoszewski, V. Tarelnyk - Kielce: Wydawnictwo Politechniki Świętokrzyskiej, 2016. – 111p.

Additional sources:

- 12. Tarelnyk V.B. Control of the quality of the surface layers of parts by combined electroerosion alloying. Sumy.: MakDen, 2002.-323p.
- 13.V.B. Tarelnyk, V.S. Marcinkovsky, B. Antoshevsky Improving the quality of sliding bearings: Monograph. Sumy: "MakDen" Publishing House, 2006.-160 p.
- 14.V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsynkovsky, Yu.Y. Semirnenko, N.V. Tarelnyk, M.A. Mykulina, B. Sarzhanov .AND. Increasing the environmental safety of the formation of wear-resistant coatings on the surfaces of parts such as rotating bodies made of 12X18N10T steel using a combined technology based on electrospark alloying. Electronic materials processing, 2020. Volume 56 (5). WITH. 115-127.
- 15.Novakovsky S. Yu. Electrospark treatment of friction surfaces as a means of increasing the service life of machine parts / S. Yu. Novakovsky, E. V. Kalgankov // Integration of world scientific processes as the basis of social progress: Mater. II int. scient.-practical conf. (Kyiv, November 23–24, 2018) / NGO "Institute of Innovative Education"; Scientific and Educational Center of Applied Informatics of the NAS of Ukraine. – Kyiv: NGO "Institute of Innovative Education", 2019. – P. 204-208.
- 16.Ishchenko A.A. Technological foundations of restoration of industrial equipment with modern polymer materials Mariupol: PGTU, 2007. 250 p.
- 17.V. Tarelnyk, D. Hlushkova, V. Martsynkovskyy, M. Dumanchuk, B. Antoszewski, Cz. Kundera, Ie. Konoplianchenko, N. Tarelnyk, S. Hudkov, A. Zahorulko. Increasing fretting resistance of flexible element pack for rotary machine flexible coupling Part 1. Analysis of the reasons affecting fretting resistance of flexible elements for expansion couplings. Journal of Physics: Conference Series. 1741 (2021) pp. 012048-1 012048-11.https://doi.org/10.1088/1742-6596/1741/1/012048
- 18.Antoszewski B, Gaponova OP, Tarelnyk VB, Myslyvchenko OM, Kurp P, Zhylenko TI, Konoplianchenko I. Assessment of Technological Capabilities for Forming Al-CB System Coatings on Steel Surfaces by Electrospark Alloying Method. Materials. 2021; 14(4):739. <u>https://doi.org/10.3390/ma14040739</u>
- 19. Tarelnyk V., Konoplianchenko Ie, Gaponova O., Antoszewski B., Kundera Cz., Martsynkovskyy V., Dovzhyk M., Dumanchuk M., Vasilenko O. (2020) Application of multicomponent wear-resistant nanostructures formed by electrospark allowing for protecting surfaces of compression joint parts. In: Pogrebnjak A., Bondar O. (eds) Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer Proceedings in 18, Physics, Chapter vol 240. Springer, Singapore, pp 195-209.https://doi.org/10.1007/978-981-15-1742-6 18
- 20.Xiang Hong, Ke Feng, Ye-fa Tan, Xiao-long Wang, Hua Tan, Effects of process parameters on microstructure and wear resistance of TiN coatings deposited on TC11 titanium alloy by electrospark deposition, Transactions of Nonferrous

Metals Society of China, Vol. 27, Issue 8, (2017), pp. 1767-1776.<u>https://doi.org/10.1016/S1003-6326(17)60199-7</u>

- 21.T. Penyashki, G. Kostadinov, I. Mortev, E. Dimitrova, Investigation of properties and wear of WC, TiC and TiN based multilayer coatings applied onto steels C45, 210CR12 AND HS6-5-2 deposited by non-contact electrospark process, Journal of the Balkan Tribological Association, Vol. 23, No. 2, 325–342 (2017).<u>https://www.researchgate.net/publication/322199533</u>
- 22.Ph.V. Kiryukhantsev-Korneev, AN Sheveyko, NV Shvindina, EA Levashov, DV Shtansky, Comparative study of Ti-C-Ni-Al, Ti-C-Ni-Fe, and Ti-C-Ni-Al/Ti-C-Ni- Fe coatings produced by magnetron sputtering, electro-spark deposition, and a combined two-step process, Ceramics International, Vol. 44, Issue 7, (2018), pp. 7637-7646.<u>https://doi.org/10.1016/j.ceramint.2018.01.187</u>