Ministry of Education and Science of Ukraine Sumy National Agrarian University Faculty of Engineering and Technology Department of Technical Service

Work program (syllabus) of the educational component CC 6 – Modeling and planning a scientific experiment in engineering (mandatory)

Implemented within the educational program Industrial Machinery Engineering

(name)

in specialty 133 "Industrial machinery engineering" (code, name)

third (educational and scientific level) level of higher education

Sumy-2022

Developers:

, Tarelnyk V.B., Doctor of Technical Sciences, Professor, Head of the Department of Technical Sciences

(signature)

(surname, initials) (academic degree and title, position)

	0, 2022 No. 1	
		-
Head	MINS	Tarelnyk V.B.
departments	(signature)	(last name, initials)
	protocol of August 30	Head MMA

Agreed:

Guarantor of the educational program V.B. Tarelnyk (signature) (full name) Dean of the Faculty V.M. Zubko

signature) (full name)

Review of the work program (attached) provided by:

Lubko (Full name)

M.Yu.Dumanchuk (Full name)

Methodologist of the Department of Educational Quality, licensing and accreditation <u>J. Japp</u> N.M. Baranik_ (signature)

Registered in the electronic database: date: 03,09 2022.

© SNAU, 2022

Information on reviewing the work program (syllabus):

Educational	Number of the	Change	es reviewed and approved	
the year in which are introduced	appendix to the work program with a description of the	Date and number minutes of the meeting	Head of the Department	Guarantor educational
changes	changes	departments		programs

1. GENERAL INFORMATION ABOUT THE EDUCATIONAL COMPONENT

1.	Name CC	Modeling and planning a scientific experiment in engineering					
2.	Faculty/department				nent of Technical		
	5 1	Service	0	0, 1			
3.	Status CC	Mandatory	Mandatory				
4.	Program/Specialty		Educational and scientific program "Industrial machinery engineering"				
	(programs)	in specialty 133					
5.	CC can be offered for			, ,	C		
	(to be filled in for						
	selective CCs)						
6.	NQF level	Level 8					
7.	Semester and duration	Daily					
	of study	3rd semester, 10	weeks				
8.	Number of ECTS	3					
	credits						
9.	Total hours and their	Con	tact work (class	ses)	Independent work		
	distribution	Lectures	Practical /	Laboratory			
			seminar				
		Daily	Daily		Daily		
		16	14		60		
10.	Language of	Ukrainian, Engli	sh				
	instruction						
11.	Teacher/ Coordinator	Tarelnyk Viacheslav Borysovych, Doctor of Technical Sciences,					
	educational component	Professor, Head of the Department of Technical Service					
		Consultation hou	urs – every Mon	day from 10:00	to 12:00, room 302m		
11.	Contact information	viacheclav.tarelr	nyk@snau.edu.u	ıa			
1							
12.	General description of				sts to acquire in-depth		
	the educational				ctivities, in particular,		
	component				sing applied computer		
		1 0 1		•	nodeling tools in order		
					and practical research		
				-	presentation. Mastery		
		-	-		f modeling experiments		
			-		ills and abilities in their		
		-	a conduct in	the specialty	'Industrial Mechanical		
13.	Purpose of the	Engineering".	he acquisition	by applicants	of the principles and		
1.J.	educational component		1	• 11	ogical processes and		
	- succession component		-		earch, acquiring skills		
		_			oblems at the stage of		
		-		-	nalytical dependencies		
		with the integrat	-				
14.	Prerequisites for				ation technologies in		
	studying CC,	scientific activity					
	connection with other		, – –				
	educational						
	components of ESP						
15.	Academic Integrity	If a candidate s	submits another	candidate's wo	rk as their own, such		
	Policy	work is canceled			,		
	-	In case of cheati	ng, retake the co	orresponding ass	ignment.		
	1		g text borrowin		•		

		plagiarism), the work will be canceled.
16.	Link to the course in	https://cdn.snau.edu.ua/moodle/course/view.php?id=1085
	Moodle system	

2. LEARNING OUTCOMES BY EDUCATIONAL COMPONENT AND THEIR RELATIONSHIP WITH PROGRAM LEARNING OUTCOMES

Learning outcomes for CC: After studying the educational component, the applicant is expected to be able to	aims	m learnin to achiev ing to the PLO 3	How is the LOA assessed?			
LOA 1. Have methodological and methodological foundations of modeling experiments in engineering research	Х			Х		Individual task
LOA 2. Carry out a formalized description of the research object, checking the adequacy of the resulting model.		X	X		X	Individual task
LOA 3. Make scientifically sound choices of modeling and experimental design methods to be used	Х	Х			Х	Individual task
LOA 4. Possess modern equipment for processing and interpreting experimental data		Х	Х	Х	Х	Individual task Analyticalreview with presentation

PLO 1. Have conceptual and methodological knowledge in mechanical engineering and at the border of subject areas, as well as research skills sufficient to conduct scientific and applied research at the level of the latest world achievements in the relevant field, obtain new knowledge and/or implement innovations. PLO 3. Be able to conduct critical analysis, evaluation and synthesis of new scientific provisions and ideas regarding the construction and operating conditions of machines and equipment, their complexes and systems. Analyze modern scientific works, identifying controversial and little-researched issues in the field of mechanical engineering.

PLO 3. Formulate and test hypotheses; use appropriate evidence to substantiate conclusions, in particular, the results of theoretical analysis, experimental studies and mathematical and/or computer modeling, and available literature data.

PLO 4. Develop and research conceptual, mathematical and computer models of processes and systems, effectively use them to obtain new knowledge and/or create innovative products in mechanical engineering and related interdisciplinary areas.

PLO 6. Develop and implement scientific and/or innovative engineering projects that provide an opportunity to rethink existing and create new holistic knowledge and/or professional practice and solve significant scientific and technological problems in mechanical engineering while adhering to the norms of academic ethics and taking into account social, economic, environmental and legal aspects.

PLO 8. Apply general principles and methods of mathematics, natural and technical sciences, as well as modern methods and tools, digital technologies and specialized software to conduct research in the field of mechanical engineering.

Topic.	Distr			the general	
List of issues to be addressed within the topic			e budg		Recommended
	Classro	oom woi	rk	Independent work	reading
	Lec	PC	Lab		
Topic 1. Models. Modeling in Engineering	2	-		10	1-8, 15, 20,
Basic concepts and definitions. Goals and principles of					22, 23, 25-28
modeling. Axioms of modeling theory. Types of models and modeling. Model functions. Factors influencing the					
object model. Mathematical modeling. Requirements for a					
mathematical model. Structure of a mathematical model					
Classification of mathematical models. Goals of	f				
mathematical modeling for technical objects and					
technological processes. Algorithm for building a model					
Modeling technologies. Algorithm for building ar					
analytical model. Algorithm for building an empirica					
model. Brief description of the main stages of algorithms	5				
for building analytical and empirical models. Topic 2. Systems modeling methodology.	2	_		10	1-4, 7, 8, 11
Logic of system analysis. Formation of general ideas				10	1-7, /, 0, 11
about the system. Identification of the purpose, goal, mair					
objectives, functions of the system properties. Formation					
of basic subject concepts used in the system. Formation or	f				
in-depth ideas about the system. Modeling of the system					
as a stage of its research. Systematic approach to					
modeling. Concepts of system and model. Models of					
statics and dynamics, models of transformation processes and systems. Developed classification of mathematica					
models. Deterministic and stochastic models. Dynamic					
and static models. Automatic, semi-automatic and					
integrated modeling.					
Topic 3. Methods of researching models.	2	-		10	1, 2, 7-9, 11,
Monte Carlo method. Simulation modeling. Formulation					12, 13, 15
of the simulation modeling problem. Simulation modeling					
method. Typical implementation scheme. Accuracy of					
mathematical modeling. Dynamic systems with lumped parameters. Oscillations in mechanical systems. Single-					
mass and multi-mass systems. Damping of oscillations					
Linear and nonlinear systems. Dynamic similarity and					
modeling of phenomena, processes and systems. Concepts					
of identification. Identification experiment. Identification					
of algorithmic and information models. Identification					
methods. Computational experiments using mathematica					
models. Analytical and numerical modeling. Application					
of mathematical apparatus for modeling technical systems Errors and properties of computational methods and					
algorithms. Methods of processing experimental data					
Interpolation, approximation, statistical and digital data					
processing					
Topic 4. Software for device and system modeling	4	4		10	9, 10, 15, 19,
Application of the package for automation of					29, 30
physical processes. Real and virtual physical devices					
and systems. Description of physical processes using					
LabView programs. Virtual device libraries					
Language and graphics of the LabView software	>				

3. CONTENT OF THE EDUCATIONAL COMPONENT (COURSE PROGRAM)

package, user interface. Structure of the LabView			
language. Set of virtual devices. Functional set.			
Graphics in LabView. Control elements of virtual			
devices and indicators. Programming of operations.			
Arithmetic and Boolean operations in LabView.			
Actions with data arrays and strings. Clusters and			
operations with them. Structures and cycles. Methods			
of creating virtual physical devices, data processing.			
Methods of data collection in physical experiments.			
Automation of data collection using computer and			
measurement technologies of the LabView software			
package. Hardware part of data collection systems.			
Devices and input/output boards of National			
Instruments. Examples of data collection in physics			
and engineering.			
Basic information about the Simulink mathematical			
modeling package. Basic capabilities of the Simulink			
extension package. General principles of operation in the			
Simulink package. Working with demonstration examples.			
Basics of operation in the Simulink package. Library of			
modules (blocks) of the Simulink package. Recorders.			
Sources. Typical dynamic links. Built-in mathematical			
functions. User functions. Typical dependencies. Complex			
signals and systems. Construction of block diagrams of			
dynamic systems. Features of modeling linear systems in			
the Simulink package. Problem formulation. Model			
creation. Model construction block diagram. Model			
launch. Features of modeling nonlinear systems in the			
Simulink package. Problem formulation. Model creation.			
Model construction block diagram. Model launch.			
Topic 5. Experimental planning methodology2	2 4	10	1, 8, 9,10, 16,
Orthogonal first-order designs. Full factorial			19, 29, 30
experiment. Reproducibility variance. Assessment of			
the adequacy of the approximating dependence of the			
object under study. Assessment of the significance of			
ş .			
the coefficients of the approximating dependence			
taken in the form of an algebraic polynomial, in the			
sense of the difference of the values of these			
coefficients from zero. Processing of the			
experimental results. Small factorial experiment.			
Drawing up second-order designs. Orthogonal			
central-composition designs. Designing an			
experiment when searching for an experimental area.			
Classical methods for determining the extremum.			
Factorial methods for determining the extremum.			
e			
Analysis of variance in experimental research.			
Analysis of variance in experimental research. Single-factor analysis of variance.	1 6	10	15 17 21 21
Analysis of variance in experimental research.Single-factor analysis of variance.Topic 6.Specialized mathematical data processing4	4 6	10	15, 17-21, 31-
Analysis of variance in experimental research.Single-factor analysis of variance.Topic 6.Specialized mathematical data processing4software products	4 6	10	15, 17-21, 31- 34
Analysis of variance in experimental research.Single-factor analysis of variance.Topic 6.Specialized mathematical data processing4software productsMathCAD working environment. Basics of	4 6	10	
Analysis of variance in experimental research.Single-factor analysis of variance.Topic 6.Specialized mathematical data processing4software productsMathCAD working environment. Basics ofcalculations in MathCAD. Entering and editing	4 6	10	
Analysis of variance in experimental research.Single-factor analysis of variance.Topic 6.Specialized mathematical data processing4software productsMathCAD working environment. Basics ofcalculations in MathCAD. Entering and editingformulas. Graphical capabilities. Basics of working	4 6	10	
Analysis of variance in experimental research.Single-factor analysis of variance.Topic 6.Specialized mathematical data processing4software productsMathCAD working environment. Basics of calculations in MathCAD. Entering and editing formulas. Graphical capabilities. Basics of working in MathCAD. Algebraic calculations in MathCAD.	4 6	10	
Analysis of variance in experimental research.Single-factor analysis of variance.Topic 6.Specialized mathematical data processing4software productsMathCAD working environment. Basics ofcalculations in MathCAD. Entering and editingformulas. Graphical capabilities. Basics of working	4 6	10	

				1
Numerical solution of mathematical problems.				
Numerical differentiation. Numerical integration.				
Solving nonlinear algebraic equations. Solving				
systems of linear algebraic equations. Performing				
numerical calculations in MathCAD. Working in				
MathLAB. General information about MathLAB.				
Constructing graphs and surfaces. Basics of				
programming in MathLAB. Programming branched				
computational processes. Programming branched				
computational processes. Programming cyclic				
computational processes. Programming cyclic				
computational processes. Creating user procedures				
and functions. Numerical calculations. Integration				
and differentiation. Solving equations and systems of				
equations. Working with the Statistica program.				
Basics of working with the Statistica program.				
Program interface. Organization of derived data.				
Working with data files. Modular structure of the				
program. Creating a data file in the Statistica				
program. Calculating descriptive statistics in the				
Statistica program. Arithmetic mean. Sample mean.				
Sample variance. Standard deviation. Mode. Median.				
Quantile. Using the Statistica program for primary				
data analysis. Using the probability calculator.				
Building and editing statistical graphs. Generating				
random numbers. Determining the main parameters				
of probability distributions.				
Total	16	14	60	

4. TEACHING AND LEARNING METHODS

LOA	Teaching	Number of	Teaching	Number
	methods(work that	hours	methods(what types of	of hours
	will be carried out by		learning activities	
	the teacher during		should the student	
	classroom lessons,		perform independently)	
	consultations)			
LOA 1. Have methodological	Problem lecture,	4	Independent work with	10
and methodological foundations	thematic discussion,		the textbook, study of	
of modeling experiments in	"Round table",		theoretical material.	
engineering research	discussion of current			
	issues.			
LOA 2. Carry out a formalized		10	Independent work with	20
description of the research	teacher consultations,		the textbook,	
object, checking the adequacy	discussion of current		completion of	
of the resulting model.	issues.		individual tasks.	
LOA 3. Make scientifically	Multimedia	10	Personalized learning,	20
sound choices of modeling	lecture,		independent work with	
and experimental design	"brainstorming",		the textbook,	
methods to be used	discussion of current		completion of	
	issues.		individual tasks.	
LOA 4. Possess modern	Flipped classroom,	6	Independent work with	10
equipment for processing and	learning through		the textbook,	
interpreting experimental data	action,		learning through	
	teacher consultations,		research.	
T (11	thematic discussion.	20		(0)
Total hours		30		60

5. EVALUATION BY EDUCATIONAL COMPONENT

5.1. Diagnostic assessment (indicated as needed)

5.2. Summative assessment:

5.2.1. To assess the expected learning outcomes, there are

No.	Summative assessment methods	Points / Weight in the overall	Date of
		score	compilation
1.	Completing an individual task	25 points / 25%	For 4 weeks
2.	Completing an individual task	25 points / 25%	At 6 weeks
3.	Completing an individual task	25 points / 25%	At 8 weeks
4.	Analytical review with presentation	25 points / 25%	At 10 weeks
	(credit)	_	

Component	Unsatisfactorily	Satisfactorily	Good	Perfectly
	<11 points	11-15 points	16-21 points	22-25 points
Execution of individual this task	Minor awareness regarding the problem, given short description. Does not demonstrate independence thinking about selected topic.	Given in larger as far as problem description (without analysis), insufficient justification highlights, not enough consistent argument, presentation missing or submitted superficially. Processed only literature that recommended teacher.	Demonstrated understanding, depth and/or or detailing problems; main problematic aspects justified, arguments are consistent; various points are studied view, the presentation is meaningful, consistent. Processed literature only recommended teacher.	Quite deep and/ or detailed problem, different views on the problem were analyzed; all the main points are stated, the arguments consistent and weighty; various are analyzed points of view are given own suggestions.
Analytical review with presentation (credit)	<11 points Task of requirements not met	<i>11-15 points</i> Majority requirements completed, but individual components are missing or insufficiently disclosed, missing analysis of other approaches to the question	<i>16-21 points</i> All task requirements met	22-25 points All task requirements have been met, creativity, thoughtfulness have been demonstrated, and the original proposal has been proposed. problem solving

5.2.2. Criteria evaluation

5.3. Formative assessment:

To assess current progress in learning and understand areas for further improvement,

No.	Elements of formative assessment	Date
1	Computer simulation with elements of problem tasks	During classes
2	Verbal feedback from teacher and students while completing an individual task	During classes
3	Verbal feedback from teacher and students regarding the analytical review with presentation	Week 10

6. LEARNING RESOURCES (LITERATURE)

6.1. Main sources:

- 1. Yerina A.M., Zakhozhiy V.B., Yerin D.L. Methodology of scientific research: Textbook. Kyiv: Center for Educational Literature, 2004. 212 p.
- Mokin B. I. Mathematical methods of identification of dynamic systems: a textbook / B. I. Mokin, V. B. Mokin, O. B. Mokin. – Vinnytsia: VNTU, 2010. – 260 p.
- 3. Ludchenko A. A., Ludchenko Ya. A., Primak T. AND. Fundamentals of scientific research: Textbook. Manual / Ed. AND. AND. Ludchenko. - K.: "Knowledge" Oblast, KOO, 2002. - 114 p.
- 4. Narynyan A.R. Foundations of scientific research. Study guide for universities. / Narynyan A.R. K.: 2002. 112 p.

- Foundations of scientific research. Study guide for universities. \ Frumkin R.A. Alchevsk., 2001 -201 p.
- 6. Sidenko V. M., Grushko I. M. Fundamentals of Scientific Research. Kharkiv, Higher School, 2002 200 p.
- 7. Sheiko V.M., Kushnarenko N.M. Organization and methodology of scientific research activity: Textbook. 2nd ed., revised and supplemented. K.: Znannya-Press, 2002. 295 p.
- 8. Yerina AM Statistical modeling and forecasting: a textbook. / A. M. Yerina. Ternopil: University Book, 2005. 170 p.
- 9. Koshevy, M.D. Optimal planning of experiments in the study of technological processes, devices and systems: a manual/ [M.D. Koshevy, O.M. Kostenko, O.V. Zabolotny and others]. Kh.: National Aerospace University "Kharkiv Aviation Institute", 2010.– 161 p.
- Cheremnykh E.V. and others, Theory of experiment planning and examples of its application: teaching aids. / E.V. Cheremnykh, T.M. Salo. — L.: Publishing House of the National University "Lviv. Polytechnic", 2005. — 148 p.
- 11. Rajagopal K. Operations research / K. Rajagopal. PHI Learning Pvt. Ltd., 2012. 608 p.
- 12. Mayboroda R.E. Regression / R.E. Mayboroda. K.: TViMS, 2004. 283 p.
- 13. S.G. Radchenko Formalized and heuristic solutions in regression analysis: monograph / S.G. Radchenko. K.: Korniychuk, 2015. 235 p.
- 14. Nazarenko L.A. Planning and processing of experimental results: lecture notes. Kharkiv: KhNAMG, 2008. 163 p.
- 15. Tomashevsky O.V. Computer technologies of statistical data processing / O.V. Tomashevsky, V.P. Rysikov. Zaporizhzhia: ZNTU, 2015. 175 p.
- Cheremnykh E.V. Theory of experimental planning and examples of its application: a textbook / E.V. Cheremnykh, T.M. Salo. - Lviv: Publishing House of the National University "Lviv Polytechnic", 2005. - 148 p.

6.2. Additional sources:

- 17. Kundrat A.M., Kundrat M.M. Scientific and technical calculations using MathCAD and MS Excel. Textbook. Rivne: NUVGP, 2014. 252p.
- Mayboroda R.E., Sugakova O.V. Statistical data analysis using the STATISTICA package. Textbook (2012) [Electronic resource]. – Access mode:<u>https://bit.ly/3BI4keB</u>
- Steinhaus S. Comparison of Mathematical Programs for Data Analysis (Edition 5.03) [Electronic resource] Munchen/Germany. 64 p. Access mode: <u>https://bit.ly/3p5A34x</u>
- 20. Lazarev Yu. Modeling processes and technical systems in MATLAB. Training course. Kyiv: Izdatelskaya gruppa BHV, 2004. 474 p.
- Devin V.V., Tkachuk V.S. Solving point kinematics problems using the MathCAD system// Actual scientific studies in the modern world// Sat. scientific works Pereyaslav-Khmelnytskyi. 2018. (3). C.128-135 URL:<u>https://elibrary.ru/item.asp?id=32763343</u>
- Ie. Konoplianchenko et al. Mathematical Modeling a Process of Strengthening Steel Part Working Surfaces at Carburizing Thereof by Electroerosive Alloying Method. (2018) AIP Conf. Proc. 2017: 020008-1–020008-14.<u>https://doi.org/10.1063/1.5056271</u>.
- V. Tarelnyk, Ie. Konoplianchenko, N. Tarelnyk, A. Kozachenko, "Modeling Technological Parameters for Producing Combined Electrospark Deposition Coatings", Materials Science Forum, Vol. 968, pp. 131-142, 2019. <u>https://doi.org/10.4028/www.scientific.net/MSF.968.131</u>
- Häse, F., Aldeghi, M., Hickman, RJ, Roch, LM, Christensen, M., Liles, E., Hein, JE, Aspuru-Guzik, A. Olympus: A benchmarking framework for noisy optimization and experiment planning (2021) Machine Learning: Science and Technology, 2 (3), art. no. 035021.<u>https://doi.org/10.1088/2632-2153/abedc8</u>
- Zhao, X., Pan, J., Li, L. Research of Integrated Impeller Modeling and Five-axis Machining Technology based on Reverse Engineering (2021) Journal of Physics: Conference Series, 1865 (3), art. no. 032037.<u>https://doi.org/10.1088/1742-6596/1865/3/032037</u>

- Hofelich, M., Mantel, KV, Bursac, N., Omidvarkarjan, D., Matthiesen, S., Meboldt, M., Schneider, T. Attributes of research environments for modeling engineering simulators for design support validation (2021) Procedia CIRP, 100, pp. 678-683.https://doi.org/10.1016/j.procir.2021.05.143
- Horvath, L. Research Configuration of Engineering Modeling Platform (2020) SACI 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics, Proceedings, art. no. 9118812, pp. 261-266.<u>https://doi.org/10.1109/SACI49304.2020.9118812</u>
- Guo, M. Engineering-oriented modeling and experimental research on DC-biased transformers (2019) Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering, pp. 587-664.<u>https://doi.org/10.1007/978-981-15-0173-9_15</u>
- Koshevoy, N.D. Methodology for increasing the efficiency of experimental research / N.D. Koshevoy, E.M. Kostenko // Integrated intellectual robotic complexes (IIRTK-2009): abstracts of the second international scientific and practical conference, May 25–28. K.: NAU, 2009.– P.165 166.
- 30. Afanasyeva N. Yu. Computational and experimental methods of a scientific experiment / N. Yu. Afanasyeva, 2010. M. : KnoRus, 2010. 330 p.
- 31. Official Mathcad website. [Electronic resource] Access mode: http://mathcad.com.ua/
- 32. Official Matlab website. [Electronic resource] Access mode: https://www.mathworks.com/
- 33. Official website of Smath Studio [Electronic resource] Access mode: http://en.smath.info/
- 34. Maxima official website. [Electronic resource] Access mode: http://maxima.sourceforge.net/

6.1 English-language Internet resources

Online organizers

<u>Docollab</u>– Helps to manage scientific research, collaborate with colleagues and publish findings.

<u>Elabftw</u>– Electromic lab notebook made by researchers, for researchers, with usability in mind.

ELabJournal- GLP-compliant Electronic Lab Notebook and lab management tool.

<u>Evernote</u>- A place to collect inspirational ideas, write meaningful words, move important projects forward.

<u>Findings App</u>– Lab notebook app that allows to organize experiments, keep track of results, manage protocols.

<u>Hivebench</u>– Hosted numeric laboratory notebook tool to manage protocols, experiments, share with team.

<u>Journal Lab</u>– A community of scientists who share open summaries and peer review of articles.

<u>LabArchives</u>- Web-based product to enable researchers to store, organize, and publish their research data.

Labfolder – Simple way to document research and to organize protocols and data.

<u>LabGuru</u>– Supports day to day activities of a research group (vision, execution, knowledge, logistics).

<u>Laboratory Logbook</u>– Document projects running in a lab, manage experimentally obtained data, metadata.

sciNote- Open source lab notebook with workflows and modular functionalities.

Sumatra- Automated electronic lab notebook for computational projects.

Tools for collaborative experimentation

<u>Emerald Cloud Lab</u>– A web-based life sciences lab, developed by scientists for scientists. <u>ScienceExchange</u>– Marketplace for shared lab instrumentation.

<u>TetraScience</u>– Allows you to monitor & manage experiments from anywhere.

<u>Transcript</u>- A remote, on-demand robotic life science research lab with no hardware to buy or software to install.

Addgene- Plasmid sharing platform.

<u>Antibody Registry</u>– Gives researchers a way to universally identify antibodies used in the course of research.

<u>ELabInventory</u>– Web laboratory inventory management system designed for life science research labs.

<u>Nanosupply</u>– Platform facilitating sourcing and sharing of advanced materials for research and education.

<u>Sample of Science</u>– Peer-Sharing Platform for Scientific Samples.

Electronic laboratories

<u>BioBright</u>– For better understanding of experimental conditions by connecting sensors to instruments.

Sharing samples for research

Addgene- Plasmid sharing platform.

<u>ELabInventory</u>– Web laboratory inventory management system designed for life science research labs.

<u>Nanosupply</u>– Platform facilitating sourcing and sharing of advanced materials for research and education.

Sample of Science- Peer-Sharing Platform for Scientific Samples.

Archive of experimental protocols

<u>SciVee</u>– Science video sharing platform that includes protocols.

Benchfly- Video protocols and video platform for scientists.

<u>Benchling</u>– Life science data management and collaboration platform to create, find, and discuss protocols.

<u>IPOL journal</u>– Research journal of image processing & analysis with algorithm descriptions and source code.

<u>MyExperiment</u>– Share workflows and in silico experiments.

<u>Pegasus</u>– Platform that helps workflow-based applications execute.

Online protocol- A curator of protocols contributed by researchers around the world.

<u>Scientific Protocols</u>– Share scientific protocols using the GitHub platform.

Working with data

<u>Datazar</u>– Research collaboration platform where you can easily explore, use and share data. Data data– Open source, decentralized data tool for distributing small and large datasets.

Data data – Open source, decentralized data tool for distributing small and large datasets.

<u>Delve Health</u>– Comprehensive source of real-time intelligence focused on life science research industry.

<u>Kaggle</u>– Platform for data prediction competitions.

<u>Kitware</u>- Advanced software solutions and services for data intensive R&D.

<u>mloss</u>– Machine learning open source software.

<u>MyExperiment</u>- Share workflows and in silico experiments.

<u>nanoHUB</u>– Centralized platform for computational nanotechnology research, education, and collaboration.

<u>Ovation</u>– Simplifies scientific life from sample tracking for startup labs to data management. PCR Drive– Free platform that supports researchers in all their PCR-related processes.

Pegasus– Platform that helps workflow-based applications execute.

<u>Plotly</u>– Online tool to graph and share data.

<u>Riffyn</u>- Cloud software for visual, collaborative, reproducible innovation.

<u>ROpenSci</u>– Access to data repositories through the R statistical programming environment. <u>Statcrunch</u>– Provides data analysis via the Web.

Sumatra- Automated electronic lab notebook for computational projects.

<u>SURF In context</u>– Navigate through RDF relations in a smooth and understandable way. <u>Sweave</u>– Allows to embed the R code for complete data analyzes in latex documents. <u>Synapse</u>– Platform to support open, collaborative data analysis for clear, reproducible science. <u>System in Cloud</u>– Platform, enabling clients to quickly draw and execute data-flow diagram that runs in the cloud.

<u>Tableau</u>– Easily and quickly analyze and present data and share insights.

Tavern- A suite of tools used to design and execute scientific workflows.

<u>VisTrails</u>– Scientific workflow & provenance management system that supports data exploration. <u>Wakari</u>- Web-based python data analysis.

WebPlotDigitizer- Web-based tool to extract data from plots, images, and maps.

<u>Wings</u>– Semantic workflow system that assists scientists with the design of computational experiments.

<u>Wolfram Alpha</u>– Web-based tools for scientific calculations.

<u>World Map</u>– Allows users to explore, visualize, edit, collaborate with, and publish geospatial information.